Bile acid receptor FXR: metabolic regulator in the gut

Sungsoon Fang
Nuclear hormone receptor

1905: Ernest Starling coined “hormone”
1929: Estrogen structure
1958: “Estrogen receptor” by Elwood Jensen
1985: GR and ER genes were cloned by Evans and Chambon,

Evolutionary conserved from c.elegans to human (48 NRs in human). 13% of FDA-approved drugs target nuclear receptors
Nuclear receptor family

<table>
<thead>
<tr>
<th>Endocrine Receptors</th>
<th>Adopted Orphan Receptors</th>
<th>Orphan Receptors</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-affinity hormonal ligands</td>
<td>Low-affinity dietary ligands</td>
<td>Unknown ligands</td>
</tr>
<tr>
<td>GR glucocorticoid</td>
<td>LXR α,β oxysterols</td>
<td>SF-1</td>
</tr>
<tr>
<td>GR glucocorticoid</td>
<td>LXR α,β oxysterols</td>
<td>SHP</td>
</tr>
<tr>
<td>MR mineralocorticoid</td>
<td>FXR bile acids</td>
<td>SHP</td>
</tr>
<tr>
<td>ER α,β estrogen</td>
<td>PPAR α,δ,γ fatty acids</td>
<td>TLX</td>
</tr>
<tr>
<td>AR testosterone</td>
<td>PXR xenobiotics</td>
<td>TLX</td>
</tr>
<tr>
<td>PR progesterone</td>
<td>CAR xenobiotics</td>
<td>PNR</td>
</tr>
<tr>
<td>TR α,β thyroid hormone</td>
<td>RXR α,β,γ 9-cis-RA</td>
<td>LHR-1</td>
</tr>
<tr>
<td>VDR vitamin D</td>
<td>SF-1</td>
<td>DAX-1</td>
</tr>
<tr>
<td>RAR α,β,γ retinoic acid</td>
<td>SHP</td>
<td>GCFN</td>
</tr>
<tr>
<td>HNF-4 α,γ</td>
<td>TR2,4</td>
<td>HNF-4 α,γ</td>
</tr>
<tr>
<td>ERR α,β,γ</td>
<td>Rev-erb α,β</td>
<td>ERR α,β,γ</td>
</tr>
<tr>
<td>Rev-erb α,β</td>
<td>ROR α,β,γ</td>
<td>ROR α,β,γ</td>
</tr>
<tr>
<td>ROR α,β,γ</td>
<td>NCUP-TF α,β,γ</td>
<td>NCUP-TF α,β,γ</td>
</tr>
</tbody>
</table>
Precise regulation of NR transcriptional activity

Active repression
Co-repressors recruit chromatin modifying enzymes (HDACs)

Ligand-mediated activation
Exchange repressive (HDACs) for activating enzymes (HATs)
Diet is the factor to determine our physiology
Chronic Inflammation and Diabetes: Walking the Line

Obesity → Chronic Inflammation → Diabetes
Targeting Metabolic syndromes

Metabolic Diseases: Obesity* and Diabetes (Type II)*
(Burns Fat improves Insulin resistance)

Insulin therapy: feeding signal
FXR responds to feeding signals via BAs

- LIVER
- GALL BLADDER
- INTESTINE
- BLOOD
- Chylomicrons

FXR

Bile circulation pathway from liver to intestine.
Question: Does intestinal FXR regulate whole body metabolism?
FXR paradox:

FXR KO mice: dyslipidemia, hyperglycemia
FXR agonist: GW4064
acute treatment in normal chow
→ improved glucose/lipid metabolism

Ob/FXRKO: improved metabolic phenotypes
FXRKO with HFD: improved metabolic phenotypes
FXR agonist in DIO: more obese than control
Developing new ligands for FXR is promising to treat metabolic diseases

FXR is a molecular target for the effects of vertical sleeve gastrectomy

Karen K. Ryan¹, Valentina Tremaroli², Christoffer Clemmensen¹,³, Petia Kovatcheva-Datchary², Andriy Myronovych⁴, Rebekah Karns⁵, Hilary E. Wilson-Pérez¹, Darleen A. Sandoval¹, Rohit Kohli⁴, Fredrik Bäckhed²,⁶ & Randy J. Seeley¹
Development of novel FXR agonists is required to avoid the adverse effects of FXR activation.
Fexaramine

- Structurally distinct from natural bile acids
- Distinct gene expression profiles compared to GW4064 or bile acids

Mol Cell, 2003
Fex: intestinal specific-FXR agonist

Treatment (PO or IP)

5 days

Serum collection

LC/MS quantitation

IP injection

PO Injection

Serum Fexaramine (nM)

200

150

100

50

0

**

FEX EC50 = 25nM

Oral gavage

Relative Expression

4

3

2

1

0

Liver

kidney

ileum

Vehicle

Fexaramine

FXR

SHP

BSEP

OSTβ

FXR

SHP

OSTβ

FXR

SHP

FGF-15

IBABP

OSTα

OSTβ
Anti-obesity effects by FEX

Graphs showing the effect of Fexaramine on body weight and serum glucose levels compared to Vehicle and Vehicle-HFD groups.
Enhanced energy expenditure in BAT by FEX

FEX-treated mice consume more glucose and lipid as energy sources
Enhanced energy expenditure in BAT by FEX

Enhanced core temperature in Fex compared to Vehicle.

Gene expression changes in OXPHOS in BAT.
Browning in white adipose tissues by FEX

UCP1 staining

Vehicle

Fex

Oxygen consumption rate (pMoles/min)

**
Reduced hepatic gluconeogenesis and lipogenesis

Vehicle

Fex
Fex improves glucose homeostasis

Clamp study:
→ heavier mice for fexaramine to prepare body weight-matched cohort (Olefsky lab)

[Graph showing body weight over time for Vehicle and Fexaramine groups]

[Bar graphs comparing Basal HGP, GDR, FFA suppression, and HGP suppression for Vehicle and Fexaramine groups]
Fexaramine effects

TYPICAL DIET PILL
- affects multiple targets throughout the body

FEXARAMINE
- targets only the gut

Side effects:
- pulmonary hypertension, heart disease, elevated blood pressure, restlessness, dizziness, insomnia, headache, anorexia, constipation, diarrhea, decrease in absorption of fat-soluble vitamins

Studied in animal models

- Gluconeogenesis ↓
- Lipogenesis ↓
- Inflammation ↓
- Browning ↑
- Energy expenditure ↑
Fexaramine: Therapeutic strategy for treatment of T2D?
Is Fexaramine bariatric surgery mimetic?

Weight loss
Elevated FGF19
Decrease of TCA level
Increase of CA level
Is gut-specific FXR agonism bariatric surgery mimetic?

- **FGF15 orthologue:** FGF19 (human)

- **Serum FGF-15 (pg/ml)**
 - **Vehicle:** N.D.
 - **Fexaramine:**

- **Ileal FXR target genes**

- **Weight loss**
- Elevated FGF19
- Decrease of TCA level
- Increase of CA level

- FGF15
- Tsku
- Enpp7
- Ttc36
- Pck1
- Per1
- Slc5a12
- Ace
- Homer2
- Gadd45b
- Aqp1
- Pcsk9
- Ephx2
- Ms4a10
- Akr1c19
- Tsc22d3
- Cyp2d26
- Treh
- Endod1
- Tfrc
- Slc30a10
- Gpnmb
- Lpl
- Fa2h

Normalized expression

- Disorder: 0
- Moderate: -2 (green)
- Marked: -2 (dark green)
- Marked: +2 (red)
- Marked: +2 (dark red)
Is gut-specific FXR agonism bariatric surgery mimetic?
Is gut-specific FXR agonism bariatric surgery mimetic?

Weight loss
Elevated FGF19
Decrease of TCA level
Increase of CA level
Fexaramine effects

Gluconeogenesis↓
Lipogenesis↓
Inflammation↓
Browning↑
Energy expenditure↑

Gut-specific FXR agonism: potent therapeutic strategy to treat metabolic syndromes
Acknowledgement

Evans Lab
Jaemyoung Suh & Eiji Yoshihara
Liz Yu
Annette Atkins
Ruth Yu
Michael Downes
Ronald Evans

The Salk Institute
Mathias Leblanc

University of California of San Diego
Jerry Olefsky lab

University of Michigan
Alan Saltiel lab

University of Sydney
Christopher Liddle